# STI2D

Séquence 3 : analyse de la chaîne de puissance



12D - Première

# D3.3: l'énergie thermique

### Document réponse



Durée prévue : 1h30

#### Problématique :

• Qualifier l'énergie thermique

### **Objectifs**:

- utilisation des notions de flux thermique et de résistance thermique
- découverte de la notion d'inertie thermique
- sensibilisation aux déperditions énergétiques

#### Prérequis :

aucun

#### Modalités :

• document réponse et site internet (https://sti2d.ecolelamache.org/)

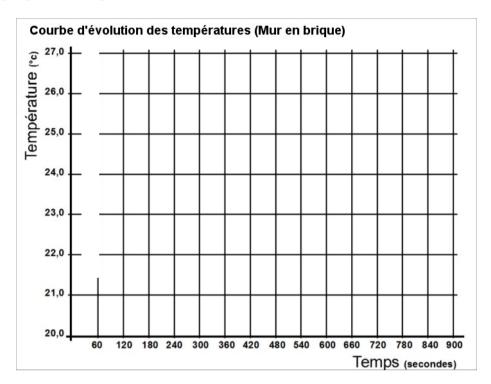
#### **Documents ressources:**

• Documents ressources N°1 et N°2 disponible sur le site internet

#### Plan de l'étude :

| I. Expérimenter l'inertie thermique d'un matériau de construction | 1 |
|-------------------------------------------------------------------|---|
| II. Étudier les transferts thermiques                             |   |
| III. Étudier l'inertie thermique                                  | 7 |

## I. Expérimenter l'inertie thermique d'un matériau de construction


#### A. Mur en brique - Protocole d'expérimentation

1. Reporter dans le tableau ci-dessous les températures en fonction du temps :

| Températures    |   |    |    |    |     | 1   |     |     |     |     |     |     |     |     |     |     |
|-----------------|---|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Temps (seconde) | 0 | 30 | 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300 | 330 | 360 | 390 | 420 | 450 |

| Températures    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Temps (seconde) | 480 | 510 | 540 | 570 | 600 | 630 | 660 | 690 | 720 | 750 | 780 | 810 | 840 | 870 | 900 |

### 2. Tracer le graphique des températures :



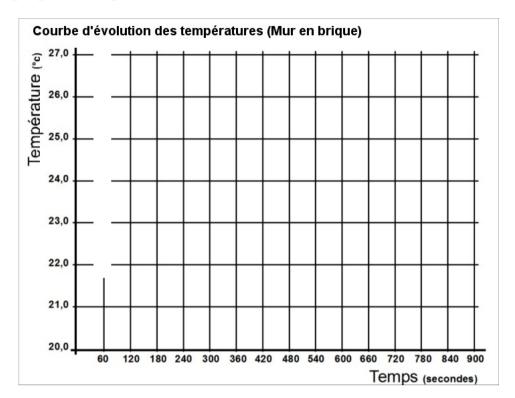
3. À partir du graphique, déterminer le temps de montée et descente de la température avec le mur en brique.

| Temps de montée en température: |  |
|---------------------------------|--|
| Temps de montee en temperature. |  |

Temps de descente : .....

## B. Mur en bois (ou parpaing) - Protocole d'expérimentation

• Effectuer le même protocole pour le mur en bois (étape 1 et 2)




4. Reporter dans le tableau ci-dessous les températures en fonction du temps :

| Températures    |   |    |    |    |     |     |     |     |     |     |     |     |     |     |     |     |
|-----------------|---|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Temps (seconde) | 0 | 30 | 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300 | 330 | 360 | 390 | 420 | 450 |

| T | empératures    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|---|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| T | emps (seconde) | 480 | 510 | 540 | 570 | 600 | 630 | 660 | 690 | 720 | 750 | 780 | 810 | 840 | 870 | 900 |

5. Tracer le graphique des températures :



6. À partir du graphique, déterminer le temps de montée et descente de la température avec le mur en bois.

| Temps de montée en température | a: |
|--------------------------------|----|
| Temps de montee en temperature | ᡛ  |

Temps de descente : .....

| _ |       |     |             |           |        | _        |
|---|-------|-----|-------------|-----------|--------|----------|
| 7 | Noter | vos | conclusions | sur l'ext | nérime | ntation. |

## II. Étudier les transferts thermiques

À partir du **Document ressource N°1**:

1. Compléter le tableau suivant afin de définir les trois échelles de Relation de la température.

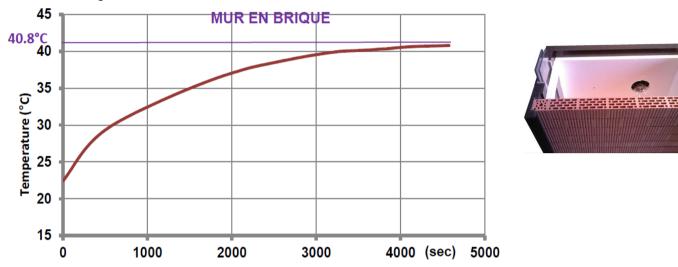
| Unité de mesure | Symbole | Relation                   | θ d'ébullition de<br>l'eau | θ de solidification de<br>l'eau |
|-----------------|---------|----------------------------|----------------------------|---------------------------------|
| Celsius         | C       | $C = (^{\circ}F - 32)/1,8$ | 100                        | 0                               |
| Fahrenheit      |         | F = 32 + (1,8* °C)         |                            |                                 |
| Kelvin          |         | K = °C + 273,15            |                            |                                 |

| 2. | Noter | la relation | entre les | échelles | Kelvin e | t Celsius. |
|----|-------|-------------|-----------|----------|----------|------------|
|    |       |             |           |          |          |            |

3. Rechercher et indiquer le ou les modes de transfert thermique des différents instruments de mesure de température définis dans le tableau ci-contre.

| Instru                    | ment de mesure | Mode de transfert thermique |  |  |
|---------------------------|----------------|-----------------------------|--|--|
| Thermomètre<br>à contact  |                |                             |  |  |
| Thermomètre<br>d'ambiance | 00             | Convection                  |  |  |
| Thermomètre<br>à distance |                |                             |  |  |
| Solarimètre               |                |                             |  |  |

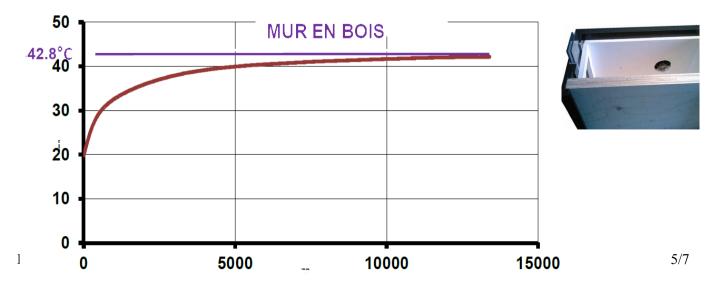
Lors d'expérimentations précédentes, des relevés de température ont été réalisés sur un temps suffisamment long afin de constater un fléchissement de la montée en température (voir courbes cidessous).


En considérant que les échanges thermiques entre le banc d'essai et son environnement s'effectuent par conduction et en vous appuyant sur les formules scientifiques du **document ressource** N°1 :

| 4. | Donner 1 | la relation | entre la | résistance t | hermique ( | en m² | '.K.W <sup>-1</sup> | ) et le | e flux | de cl | naleur. |
|----|----------|-------------|----------|--------------|------------|-------|---------------------|---------|--------|-------|---------|
|----|----------|-------------|----------|--------------|------------|-------|---------------------|---------|--------|-------|---------|

5. Déterminer la relation entre la conductivité  $\lambda$  et la résistance thermique d'une paroi.

Sachant que la surface de transfert thermique du mur du banc d'essai est d'environ 0.0713 m<sup>2</sup> (0,31 \* 0,23).


### A. Mur en brique - courbe obtenue



6. Calculer la résistance thermique du mur en brique (on prend la courbe complète jusqu'à stabilisation).

7. Déterminer la conductivité thermique de la brique.

#### B. Mur en bois - courbe obtenue



| 8. Déterminer la résistance thermique du mur en bois.puis la conductivité thermique du mur en bois :                               |                            |                                   |       |                                    |                   |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------|-------|------------------------------------|-------------------|--|--|
|                                                                                                                                    |                            |                                   |       |                                    |                   |  |  |
|                                                                                                                                    |                            |                                   |       |                                    |                   |  |  |
|                                                                                                                                    |                            |                                   |       |                                    |                   |  |  |
|                                                                                                                                    |                            |                                   |       |                                    |                   |  |  |
| C Compar                                                                                                                           | raison des résultats       |                                   |       |                                    |                   |  |  |
| -                                                                                                                                  | er les différents résultat | s dans le tableau ci-des          | sous. |                                    |                   |  |  |
| 1                                                                                                                                  | Matériaux de               | Résistance thermiqu               |       | Conductivité thermiq               | ue λ              |  |  |
|                                                                                                                                    | construction               | m <sup>2</sup> .K.W <sup>-1</sup> |       | W.m <sup>-1</sup> .K <sup>-1</sup> |                   |  |  |
|                                                                                                                                    | Brique                     |                                   |       |                                    |                   |  |  |
|                                                                                                                                    | Bois                       |                                   |       |                                    |                   |  |  |
|                                                                                                                                    | Ciment                     | 0.023                             |       | 1.05                               |                   |  |  |
| Conclure.  11. Exprimer dans le tableau ci-après l'évolution des caractéristiques thermiques d'un matériau à fort pouvoir isolant. |                            |                                   |       |                                    |                   |  |  |
|                                                                                                                                    |                            | Résistance thermi                 | que   | Conductivité thermique             |                   |  |  |
| Matériau à fort pouvoir isolant                                                                                                    |                            |                                   |       |                                    |                   |  |  |
| pouron notain                                                                                                                      |                            |                                   |       |                                    |                   |  |  |
|                                                                                                                                    |                            |                                   |       |                                    |                   |  |  |
| III. Étudier l'inertie thermique                                                                                                   |                            |                                   |       |                                    |                   |  |  |
| 1. En vous aidant du <b>document ressource N°2</b> , expliquer la notion d'inertie thermique.                                      |                            |                                   |       |                                    |                   |  |  |
|                                                                                                                                    |                            |                                   |       |                                    |                   |  |  |
|                                                                                                                                    |                            |                                   |       |                                    |                   |  |  |
|                                                                                                                                    |                            |                                   |       |                                    |                   |  |  |
|                                                                                                                                    | -                          | sultats des deux premiè           | -     | périmentations (mur en             | brique et en bois |  |  |

sans isolant), les temps mis pour chauffer ou refroidir la pièce de 25°C à 30°C.

2. Compléter le tableau suivant à partir des courbes obtenues pour chaque matériau (page précédente) :

|        | Variation de<br>température | Durée pour constater cette<br>variation en s et en mn |
|--------|-----------------------------|-------------------------------------------------------|
| Duiana | 25°C à 30°C                 |                                                       |
| Brique | 30°C à 25°C                 |                                                       |
| Bois   | 25°C à 30°C                 |                                                       |
| Bois   | 30°C à 25°C                 |                                                       |

| 3.                                                                                      | . Lorsqu'on éteint la lampe, quel matériau conserve le plus longtemps la chaleur contenue dans le banc d'essai et dans quel rapport ?                                                                                                             |                           |                                                                            |                                                            |                        |  |  |  |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------|------------------------------------------------------------|------------------------|--|--|--|
| 4.                                                                                      | En vous                                                                                                                                                                                                                                           | aidant du <b>docu</b>     | ment ressource N°2, expliq                                                 | uer comment déterminer l'                                  | inertie thermique d'un |  |  |  |
|                                                                                         |                                                                                                                                                                                                                                                   |                           |                                                                            |                                                            |                        |  |  |  |
|                                                                                         | Sachant que la capacité thermique massique (KJ.kg <sup>-1</sup> .K <sup>-1</sup> ) du bois et de la brique sont :  Bois ~1.67 Brique ~0.92  5. Déterminer à l'aide d'une balance la masse de chacune des parois et reporter vos résultats dans le |                           |                                                                            |                                                            |                        |  |  |  |
|                                                                                         |                                                                                                                                                                                                                                                   |                           | ruler le coefficient d'inertie                                             |                                                            |                        |  |  |  |
|                                                                                         |                                                                                                                                                                                                                                                   | Masse de la<br>paroi (Kg) | Capacité thermique<br>massique : C (KJ.kg <sup>-1</sup> .K <sup>-1</sup> ) | Coefficient d'inertie thermique : mC (KJ.K <sup>-1</sup> ) |                        |  |  |  |
| В                                                                                       | ois                                                                                                                                                                                                                                               |                           |                                                                            |                                                            |                        |  |  |  |
| Bı                                                                                      | rique                                                                                                                                                                                                                                             |                           |                                                                            |                                                            |                        |  |  |  |
| 6.                                                                                      | 6. Comparer l'inertie thermique du bois et de la brique creuse. Conclure.                                                                                                                                                                         |                           |                                                                            |                                                            |                        |  |  |  |
|                                                                                         |                                                                                                                                                                                                                                                   |                           |                                                                            |                                                            |                        |  |  |  |
|                                                                                         |                                                                                                                                                                                                                                                   |                           |                                                                            |                                                            |                        |  |  |  |
| 7. En été, préciser s'il est préférable d'avoir une maison en brique plutôt qu'en bois. |                                                                                                                                                                                                                                                   |                           |                                                                            |                                                            |                        |  |  |  |
|                                                                                         |                                                                                                                                                                                                                                                   |                           |                                                                            |                                                            |                        |  |  |  |
|                                                                                         |                                                                                                                                                                                                                                                   |                           |                                                                            |                                                            |                        |  |  |  |
|                                                                                         |                                                                                                                                                                                                                                                   |                           |                                                                            |                                                            |                        |  |  |  |
|                                                                                         |                                                                                                                                                                                                                                                   |                           |                                                                            |                                                            |                        |  |  |  |